
Commutative Algebra Atiyah-MacDonald

1 Chapter 1

1.1 Rings, Ideals, Radicals

1. Exercise 1. Show that if x is nilpotent and u is a unit, x + u is a unit.

2. Exercise 2. Let f = a0 + a1x + ⋅ ⋅ ⋅ + anx
n ∈ A[x]. Prove that

(a) f is a unit of A[x] if and only if all the coefficients but the constant term are
nilpotents of A and the constant term is a unit of A.

(b) f is nilpotent if and only if all the coefficients are nilpotent.

(c) f is a zero-divisor if and only if f is annihilated by a nonzero element of A.

(d) f is primitive if its coefficients generate the unit ideal. Prove that a product is
primitive if and only if its coefficients are primitive.

(Note: if the ring A is a unique factorization domain, the word “primitive” has a
slightly different meaning: in that context it means the coefficients do not have
a nonunit common factor. The two meanings coincide if the ring is a principal
ideal domain.)

3. Exercise 4. Show that in A[x], the Jacobson radical and nilradical are equal.

4. Exercise 6. A ring A has the property that every ideal not in the nilradical contains
a nonzero idempotent (i.e. an element x such that x2 = x). Prove that the nilradical
and Jacobson radical of A coincide.

5. Exercise 7. Let A be a ring in which all x ∈ A satisfy xn = x for some n > 1 (depending
on x). Show that every prime ideal of A is maximal.

6. Exercise 8. Let A be a nonzero ring. Show that the set of all prime ideals has
elements that are minimal with respect to inclusion.

7. Exercise 10. Let A be a ring, N its nilradical. Show the following are equivalent: (i)
A has just one prime ideal; (ii) every element of A is either a unit or nilpotent; (iii)
A/N is a field.

8. Exercise 11. A ring A is boolean if ∀x ∈ A, x2 = x. In a boolean ring, show that

(a) 2x = 0.

(b) Exercise 12. Prove that a local ring contains no idempotent ≠ 0,1.
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1.2 Prime Spectrum

This and the next section set up fundamental tools of algebraic geometry. We gain insight
into the geometric objects under study (curves, surfaces, etc.) by looking at the ring
of polynomial functions on those objects. We also reverse the process and start with a
ring and construct an underlying geometric object of which it can be seen as the “ring of
functions.” This underlying geometric object is called its prime spectrum. The following
exercises define the prime spectrum. See the comments below on exercise 16c, and also
exercises 26-28, for more context. Also, Exercises 23-24 in Chapter 3 are aimed at fleshing
out the way in which it makes sense to think about the ring elements as “functions” on
the prime spectrum.

1. Exercise 15. Let A be a ring and let X = SpecA be the set of prime ideals of A. For
arbitrary E ⊂ A, define V (E) to be the set of all prime ideals containing E. Check
that

(a) If a is the ideal generated by E, then V (E) = V (a) = V (
√
a).

(b) V (0) =X and V (1) = ∅.

(c) If (Ei)i∈I is a family of subsets of A, then

V (⋃
i∈I
Ei) =⋂

i∈I
V (Ei)

(d) V (a ∩ b) = V (ab) = V (a) ∪ V (b).

These results show that sets of the form V (E) are closed under arbitrary intersection
and finite union and contain X,∅; thus they obey the axioms for the closed sets of a
topology; it is called the Zariski topology on X = SpecA.

2. Exercise 16. Describe SpecA for A =

(a) Z.

(b) R.

(c) C[x].

(d) R[x].

(e) Z[x].

3. Exercise 17. If f ∈ A, let Xf be the complement of V (f) in X = SpecA. (In the geo-
metric picture based on A = k[x1, . . . , xn], Xf is the complement of a hypersurface...)
Prove the following:
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(a) The Xf form a basis for the Zariski topology.

(b) Xf ∩Xg =Xfg.

(c) Xf = ∅⇔ f is nilpotent.

(d) Xf =X⇔ f is a unit.

(e) Xf =Xg if and only if (f) and (g) have the same radical.

(f) X is quasicompact. (Aside: in algebraic geometry, the word “compact”, mean-
ing, as usual, that every open cover has a finite subcover, tends to be replaced
with the word “quasicompact”, because this property is possessed by most of
the spaces under study, even if they are not what we are used to thinking of
as compact. Fore example, SpecC[x], the algebraic-geometric model of the
topological space C, is quasicompact, even though it is not compact in the Eu-
clidean topology. There are other more advanced concepts that do a better job
of substituting for the usual notion of compactness.)

(g) More generally, each Xf is quasicompact.

(h) An open subset of X is quasicompact if and only if it is a finite union of Xf ’s.

4. Exercise 18. Let x ∈ SpecA be a point of SpecA the topological space, and let px be
the same element of SpecA except stressing that it is a prime ideal of A.

(a) Show {x} ⊂ SpecA is closed if and only if px is maximal.

(b) Show the closure of {x} is V (px).

(c) y ∈ {x}⇔ py ⊃ px.

(d) X is a T0 space, i.e. any two points are separated by an open set containing one
and not the other.

5. Exercise 21. Let φ ∶ A→ B be a ring homomorphism. Let X = SpecA,Y = SpecB. If
q ∈ Y , then φ−1(q) is a prime ideal of A, i.e. a point of X. So φ induces a mapping
φ∗ ∶ Y →X. (This map is called the pullback of φ.) Show that

(a) If f ∈ A then φ∗−1(Xf) = Yφ(f), and thus that φ∗ is continuous.

(b) If a is an ideal of A, then φ∗−1 (V (a)) = V (ae).

(c) If b◁B, then φ∗ (V (b)) = V (bc).

(d) If φ is surjective, then φ∗ is a homeomorphism of Y onto the closed subset
V (kerφ) of X. (In particular, SpecA and SpecA/N are naturally homeomor-
phic.)
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(e) If φ is injective, then φ∗(Y ) is dense in X. More generally, φ∗(Y ) is dense in
X⇔ kerφ ⊂N.

(f) Let ψ ∶ B → C be another ring homomorphism. Then (ψ ○ φ)∗ = φ∗ ○ ψ∗.

(g) Let A be an integral domain with just one non-zero prime ideal p, and let K be
A’s field of fractions. Let B = A/p×K. Define φ ∶ A→ B by φ(x) = (x̄, x), where
x̄ is the image of x in A/p. Show that φ∗ is bijective but not a homeomorphism.

1.3 Affine Varieties

1. Exercise 26. Here Atiyah and MacDonald define MaxSpec (the set of maximal ideals),
noting that in general it does not have the nice functorial properties of Spec, because
maximal ideals don’t always pull back to maximal ideals. But in some cases it is useful
because the elements of MaxSpec can be identified with the points of a topological
space.

Let X be a compact hausdorff topological space and let C(X) be the ring of continu-
ous real-valued functions on X. For x ∈X, let mx be the ideal of functions vanishing
at x. It is maximal because it is the kernel of the homomorphism C(X) → R that
maps f ↦ f(x), and this homomorphism is surjective with image the field R. So
x↦ mx is a mapping µ of X into X̃ = MaxSpecC(X). The problem aims to show µ
is a homeomorphism.

(a) Show that µ is surjective: in other words, every maximal ideal of C(X) has the
form mx.

(b) By Urysohn’s lemma, the continuous functions separate the points of x. Thus
show µ is injective.

(c) Let f ∈ C(X). Let Uf = {x ∈X ∶ f(x) ≠ 0}. (I feel Atiyah and MacDonald could
have called this Xf to stress the connection with the notation in Exercises 17
and 21.) Let Ũf = {m ∈ X̃ ∶ f ∉ m}. Show that µ(Uf) = Ũf . Show that the
open sets Uf , resp. Ũf , form a basis for the topology of X, resp. X̃, and thus
µ is a homeomorphism. (This is a motivating example for algebraic geometry
because it shows that the geometric structure of X can be recovered from the
ring C(X).)

Thus X can be reconstructed as a topological space from C(X).

2. Exercise 27. Let k be an algebraically closed field and let

fα(t1, . . . , tn) = 0
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be a set of polynomial equations (indexed by α) in n variables, with coefficients in
k. The set X of all points x = (x1, . . . , xn) ∈ k

n which satisfy these equations is an
affine algebraic variety.

Consider the set of all polynomials g ∈ k[t1, . . . , tn] with the property that g(x) = 0
for all x ∈X. Check that this set is an ideal I(X) in the polynomial ring. It is called
the ideal of the variety X. The quotient ring

k[X] = k[t1, . . . , tn]/I(X)

is the ring of polynomial functions on X, because two polynomials g, h define the
same function on X if and only if g − h vanishes at every point of X, that is, if and
only if g − h ∈ I(X).

Let ξi be the image of ti in k[X]. The ξi (for 1 ≤ i ≤ n) are the coordinate functions
on X: if x ∈X, then ξi(x) is the ith coordinate of x. k[X] is generated as a k-algebra
by the coordinate functions, so is called the coordinate ring (or affine algebra) of X.

As in Exercise 26, for each x ∈X let mx be the ideal of all f ∈ k[X] such that f(x) = 0;
check that it is a maximal ideal of k[X]. Hence, if X̃ = MaxSpec(k[X]), we have
defined a mapping µ ∶X → X̃, namely x↦ mx.

It is easy to show that µ is injective: if x ≠ y, we must have xi ≠ yi for some i
(1 ≤ i ≤ n), and hence ξi − xi is in mx but not in my, so that mx ≠ my. What is
less obvious (but still true) is that µ is surjective. This is one form of Hilbert’s
Nullstellensatz (see chapter 7).

3. Exercise 28. Let f1, . . . , fm be elements of k[t1, . . . , tn]. They determine a polynomial
mapping φ ∶ kn → km: if x ∈ kn, the coordinates of φ(x) are f1(x), . . . , fm(x).

Let X,Y be affine algebraic varieties in kn, km respectively. A mapping φ ∶ X → Y
is said to be regular if φ is the restriction to X of a polynomial mapping from kn to
km.

If η is a polynomial function on Y , then η ○ φ is a polynomial function on X. Hence
φ induces a k-algebra homomorphism k[Y ]→ k[X], namely η ↦ η ○ φ. Show that in
this way we obtain a one-to-one correspondence between regular mappings X → Y
and k-algebra homomorphisms k[Y ]→ k[X].
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